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Abstract: The discovery of ordered mesoporous materials has opened great opportunities for new 
applications in heterogeneous catalysis e.g. in soil purification processes. The focus of this study is the 
development of a mathematical model to simulate heat, mass and moisture transfer in soil arrays 
tacking into account catalytic micro- or nanoparticles. The nonlinear mathematical model of 
contaminant distribution in unsaturated catalytic porous media to the filter-trap in non-isothermal 
conditions is presented. The finite differences method was used to find the numerical solution of the 
corresponding boundary value problem and the analytical solution for mass transfer in catalytic micro- 
or nanoparticles was presented as well. Numerical experiments and their analysis were conducted using 
NanoSurface software complex.  
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1 Introduction 
Pesticide use and the disposal of radioactive, 
biological, and chemical wastes can lead to much 
higher but localized levels of soil contamination [1, 
2]. 

At the same time, researchers actively investigate 
heat, mass and moisture transfer processes on the 
meso- and micro levels. Modern industrial 
equipment allows the possibility to inject special 
nanoparticles into the soil with the purification 
purpose [3, 4]. Therefore, a lot of scientists around 
the world are involved into creation, developing, 
verification and validation of corresponding 
mathematical models for the fundamental 
understanding of the various processes of chemical 
and physical migration behaviour taking into 
account the catalytic micro- and nanoporous 
particles (catalytic porous media) [5–8].  

On the other hand, the Ukrainian scientific 
school of underground mass transfer processes 
modelling have presented a range of mathematical 
models for problems of filtration consolidation [9], 
water cleaning in wetland [10], heat transfer in a 
greenhouses [11], iron removal from underground 
water [12], earth damps stresses-strained state [13, 
14], moisture transport modeling under the 
conditions of sprinkling irrigation [15] etc. 

Consequently, they prepared a good basement for 
next level of mathematical models which may 
connect macro- and micro-scaled processes of heat 
and mass transfer tacking into account their 
nonlinear dependencies. 
 

2 Problem Formulation 
Let us consider the problem of vertical migration of 
contaminants (e.g., fertilizers, pesticides, 
radionuclides etc) in a layer of soil (Fig. 1). The 
layer of soil is fulfilled with colloid adsorbents (e.g. 
sapropel) for the purification process [16]. That is 
why is called catalytic porous media. 

 
Figure 1. The process of contaminant migration to 

the filter-trap in the one-dimensional case 
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The pore spaces between the soil grain particles 
are partially filled with water, partially with air 
(unsaturated zone or zone of suspended water). 
At depth l  in the ground is a filter-trap filled with a 
sorbent (such as vermiculite) is located. The 
piezometric pressure and temperature on the upper 
and lower surfaces of the unsaturated zone 1( )H t , 

2 ( )H t  ( 1 2H H ), 1( )T t  and 1( )T t  are specified 
respectively. The distribution of contaminant 
concentrations at the initial time 0t  : 0

1 ( )C x , 
0
2 ( )C x , 0

3 ( )C x , and 0 ( , )Q x r  are known. The 
contaminant concentrations 1

1 ( )C t , 1
2 ( )C t  and 1

3 ( )C t  
on the upper surface and 2

1 ( )C t , 2
2 ( )C t , 2

3 ( )C t  on 
the level of subsoil water are also known. 
It is necessary to build an adequate mathematical 
model, find a numerical solution and develop 
software algorithm for further investigation of the 

1( , )c x t , 2 ( , )c x t , 3( , )c x t  and ( , , )q x r t  
concentrations distribution on the large unsaturated 
area at a given time step. 
 
3 Mathematical Model 
Moisture, head and mass transfer of salts dissolved 
in water occurs under the influence of the pressure 
gradients and the concentration of salts. These 
moisture, mass and heat transfers of salt solutions 
occurs under the generalized Darcy’s,  Klutta’s and 
Fick’s laws. 

Therefore, the boundary value problem of the 
contaminant migration in a catalytic porous medium 
in the one-dimensional nonlinear case was solved 
using a mathematical model with the following 
equations [17–20]: 
the equation of contaminant migration with a 
concentration 1c  in a convectively mobile pore 
solution 

 
1

1 1
1 1 1

1
1 1 1 2 2

( )

( ) ,

T

c c T
D c D

t x x x x

c
c c c

x

      
      

       


    



 (1) 

the equation of contaminant migration with 
concentration 2c  located in the water-bound with 
the soil skeleton with account for the intraparticle 
transfer 
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the equation of contaminant migration with 
concentration 3c  located in the soil skeleton 
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 (3) 

the equation of mass transfer of contaminant with a 
current concentration q  in micro- or nanoparticles  

0

2 2 2

0 2 2

2 2( ) T

q q T T q
D q D

r r r r r r t
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,  (4) 

the equation of convective heat transfer 

 ,T T

T T T
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x x x t
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  (5) 

the equation of moisture transfer  
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,  (6) 

the generalized equation of the Darcy-Klutta law in 
nonisothermal conditions for moisture transfer of 
the salt solutions 

        1
1 1, , ( ) ,c T

ch T
K h с T c

x x x

 
      

  
     (7) 

the adsorption isotherm which at =0 becomes the 
traditional Freundlich isotherm and at β=1 - the 
Langmuir isotherm 

     2

2

( , )
( , , )

1 ( , )
f

r R

k c x t
q x r t

c x t







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,  (8) 

boundary conditions for concentrations 1c , 2c , 3c , 
q  and piezometric head h  
 1

1 1 1(0, ) ( ),l c t C t  1
2 1 2( , ) ( ),l c l t C t  (9) 

        2
3 2 1(0, ) ( ),l c t C t 2

4 2 2( , ) ( ),l c l t C t        (10) 
        3

5 3 1(0, ) ( )l c t C t , 3
6 3 2( , ) ( )l c l t C t ,         (11) 

 5 1(0, ) ( ),l T t T t  6 2( , ) ( ),l T l t T t           (12) 
       0( ,0) ( ),h x H x 1(0, ) ,h t H  2( , ) ,h l t H    (13) 
 0( ,0) ( ),T x T x  1

1 0( ,0) ( )c x C x ,          (14) 
 2

2 0( ,0) ( )c x C x , 3
3 0( ,0) ( )c x C x ,        (15) 

 0
0

( , , )
t

q Q x у r

 , 

0

( , , , ) 0
r

q x y r t

r 





   (16) 

where 1( , ),c x t  1,D  
1TD  are concentration, 

coefficients of convective diffusion of contaminant 
and thermodiffusion in the moisture flow 
respectively; 2 ( , )c x t , 2D , 

2TD  are concentration, 
coefficient of molecular diffusion of contaminant 
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and thermodiffusion coefficient in water connected 
with soil skeleton; 3( , )c x t , 3D , 

2TD  are 
concentration, coefficient of contaminant diffusion 
in soil skeleton and thermodiffusion coefficient; 

( , , ),q x r t  0D , 
0TD  are concentration, the diffusion 

coefficient of contaminant and thermodiffusion 
coefficient in particles with radius R , which located 
in soil skeleton; Tc and c are the specific heats of 

solid and liquid phases; T  is thermal conductivity; 

 1, ,K h с T  is coefficient of moisture expansion; 

 h  is coefficient of moisture capacity; ,fk    

are adsorption isotherm coefficients;   is 
coefficient of micro- or nanoparticle mass transfer 
influence on mass transfer near the ground skeleton; 
  is moisture velocity; 1 , 2 , 3  are mass transfer 
coefficients; ,c T   are coefficients of chemical and 
thermal osmosis; 1  is the porosity of soil; x  is 
vertical coordinate; ,il 1, 6i   are differential 
operators for boundary conditions; t  is a time, 

10 t t  , r  is the radius (radial variable) 0 r R  . 
 

3 Numerical Solution Algorithm 
The complicated boundary value problem (1)-(16) 
has been solved with different numerical 
approaches. The finite difference method was used 
in general. Therefore, the difference grid was 
introduced for the variables x, r, t with the steps h1, 

h2, and τ accordingly: 
 

 
1 2

1 2

1 2 3

1 1 2 3

, , ,

0 , 0 , 0 ,
, ,

i j k

h h i j k

 x ih   r jh t kτ   

ω x ,r ,t  i ,n   j ,n k ,n

h n = l,  rn R τn T



   
  

    
  
  

 (17) 

Equations (1), (3), (5), (6), (7) have been discretized 
with the Samarskii monotonic difference scheme, an 
equation (2) with an implicit difference scheme.  

Initially, we need to find out the piezometric 
head distribution h(x,t)  at each time step from the 
boundary value problem (6). The values of the 
piezometric head will differ, depending on the 
selection of the datum, but the difference between 
the values at the top and bottom of the layer will be 
the same and the Darcy velocity (7) depends only 
upon the difference in piezometric head h(x,y). 
Simultaneously we may calculate the temperature 
distribution T(x,t) according to (5). Then we can 
find the distribution of ( , , )q x r t , 3( , )c x t , 2 ( , )c x t  
and 1( , )c x t  at different time steps sequentially. 

To discretize equation (6), we use an implicit 
difference scheme [21]: 

( 1) ( )

( 1) ( 1) ( 1) ( 1)
( 1) ( 1)1 1

1
1 1 1

( 1) ( 1) ( 1) ( 1)
1, 1 1, 1, 1, 1( 1) ( 1)

1
1 1

( 1) ( 1)
( 1) (1

1
1

1 1
( )

k k

i i

k k k k

k ki i i i

i i

k k k k

i i i ik k

i i

k k

k ki i

i i

h h

h h h h
a a

h h h h

c c c c
b b

h h

T T
z z

h



   

  



   

  



 

 








    
    
   

  
    
 


 

( 1) ( 1)
1) ( )1

1

1 3

,

1, 1, 0, 1

k k

ki i

i

T T
f

h

i n k n

 

 
 

  
  

   

(18) 
where  

 ( ) ( ) ( )
1

1
2

k k k

i i ia K K   ,  ( ) ( ) ( )
1

1 ( ) ( )
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To find the piezometric head distribution h(x,t)  
from the difference equation (18) we use the 
Thomas algorithm [22]. To do this, we reduce the 
equation (18) to the next form 

( 1) ( 1) ( 1) ( )
1 1 ,k k k k

i i i i i i ia h c h b h F  

      
where 

( 1)k

i ia r a  , ( 1)
1

k

i ib r a 


 , ( 1 ( 1)

11 ( )k ) k

i i ic r a a 


   , 

( ) ( ) ( 1) ( 1) ( )( ) ,k k k k k

i i i i iF h r s g r f      

( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1, 1 1 1, 1 1, 1( )k k k k k k k k

i i i i i i i is b c b b c b c       

       , 
( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1 1 1 1( )k k k k k k k k

i i i i i i i ig z T z z T z T       

      

( )
r

h


 


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It is easy to show that the stability conditions of the 
sweep method are fulfilled. The values of the 
piezometric head on each time layer (k+1) are 
consistently found using the following relation 
 ( 1) ( 1)

1 1 1
k k

i i i ih h 

     (19) 
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11, 1,i n   31,k n . 
The finite-difference analogue of the generalized 
equation of the Darcy law (7) in nonisothermal 
conditions has the following form: 
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11, 1,i n   31, .k n  
Let us also show the mathematical manipulation 

for the equation (1). At first, we have been written 
the finite-difference analogue of the corresponding 
differential equation (1): 
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1, 1, 1, 1 1,( )

1 1, 1
1 1

( 1) ( 1) ( 1) ( 1)( )
1, 1, 1 1, 1 1,( ) ( )

1, 1, 1( )
1 1, 1

( 1) ( 1)( )
1, 1, 1( )

1, 1 1( )
1, 1

( )

( )

k k k kk
i i i iki

i

k k k kk
i i i ik ki

i ik

i

k kk
i iki

ik

i

c c c c
d

h h

c c c cr
d d

h D h

c cr
d c

D h

  





   
 



 


 
   

 
  




  

1 1

( 1) ( 1)
, 2 2,

( 1) ( 1) ( 1) ( 1)
( ) ( )1 1

1
1 1 1

1 ( ) ( ) ,

k k

i i

k k k k
k ki i i i

T i T i

c

T T T T
d d

h h h

 

   

 


  

  
  

 

(21) 

      1

(0) 0 ( ) 1 ( ) 2
1, 1 1,0 1 1, 1

1 3

( ), ( ), ( ),

1, 1, 0, .

k k

i i k n kc C x c C t c C t

i n k n

  

  
       (22) 

The next notation was used here: 
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Thomas algorithm was used for calculating the 
distribution of the 1c (x,t)  salt concentration. And the 
difference scheme (21)-(22) consequently was 
presented in the next form: 
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Finally, the 1c (x,t)  salt concentration distribution at 
time level (k+1) may be presented with the 
following relation: 
        ( 1) 1 ( 1) 1

1, 1 1, 1 1
k k

i i i ic c 

    ,           (24) 

where 
1

1
1 1 1 1 ,i

i

i i i

b

c a
 


 

1 1 ( ) 1,( 1)
1,1

1 1 1 1 ,
k k

i i i i

i

i i i

a c f

c a





  
 


 

11, 1,i n   31, ,k n  1 1
1 1 0,    1 1 1

1 2 1 .C    
Thus, the Thomas algorithm was used to solve such 
kind of tridiagonal system of equations [22]. 

Analogical mathematical manipulations were 
provided for equations (3), (5), (6), (7) and (2). 
Some of them described in details in the following 
papers [18, 23]. For intraparticle contaminant 
concentration analysis (4) may be used as numerical 
finite-difference analysis as well as analytical. Let 
us show the steps for the situation when 

0 0( )D q D const   and 
3

0TD  . Thus we can 
obtain: 

      
2 2

0 2

2q q q
D

t r r r

   
  

   
,            (25) 

The solution of (25) with appropriate boundary 
conditions 0( , ,0) ( )q x r Q r  and ( , , ) 0q x R t   can 
be found analytically: 

 
2 2

0
2

1

1( , , ) sin
n D t

R
n

n

n r
q x r t e

r R

 




  ,         (26) 

where  

0
0

2 ( )sin
R

n

n r
rQ r dr

R R


   . 

Let us find the analytical solution (25) for the case 
where the boundary condition is not homogenous: 

 1( , , )q x R t Q ,              (27) 
where 1Q const . 
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To reduce the nonhomogeneous boundary condition 
to homogeneous boundary condition, we use the 
following substitution: 
          1( , , ) ( , , )q x r t u x r t Q  ,             (28) 
where ( , , )u x r t  is the unknown function. Then 

q u

t t

 


 
, 

2 2

2 2

q u

r r

 


 
, q u

r r

 


 
, 

1 1( , , ) ( , , )q x R t u x R t Q Q   , 

1 0( , ,0) ( , ,0) ( )q x r u x r Q Q r   . 
And hence 

( , , ) 0u x R t  , 

0 1( , ,0) ( )u x r Q r Q  . 
Thus, we have the following boundary value 
problem for the function ( , , )u x r t : 

2

0 2

2u u u
D

t r r r

   
  

   
, X , (0, )r R , 0t  (29) 

     0 1( , ,0) ( )u x r Q r Q  , X , (0, )r R ,     (30) 
    ( , , ) 0u x R t  , X , 0t  .             (31) 
And the solution of (29)-(31) is the following:  

 
2 2

0
2

1

1( , , ) sin
n D t

R
n

n

n r
u x r t e

r R

 




  ,         (32) 

where  

0 1
0

2 ( ( ) )sin
R

n

n r
r Q r Q dr

R R


   . 

Returning to the replacement (7), we obtain the 
analytical solution (25) with the appropriate 
boundary conditions in the form of the following 
function: 

 
2 2

0
2

1
1

1( , , ) sin
n D t

R
n

n

n r
q x r t Q e

r R

 




   , (33) 

where  

0 1
0

2 ( ( ) )sin
R

n

n r
r Q r Q dr

R R


   . 

 

4 Software Implementation and 

Numerical Experiments 
The process phenomenon being studied was 
researched via cross-platform NanoSurface software 
package. This our tool was developed with a C++ 
programming language and Qt framework for 
different underground processes computer 
simulation [24]. The application has a suitable 
graphical user interface (GUI) that allow users to 
enter the required initial data (diffusion coefficients, 
boundary conditions, etc.), select appropriate 
mathematical model, perform necessary calculation 
and analyze received data using 2D/3D curves and 

concentration tables ( 1( , )c x t , 2 ( , )c x t , 3( , )c x t , 
( , , )q x r t ). User can easily export all received data 

for future processing. We added necessary classes 
for the NanoSurface software package for 
performing computer modelling of the physical 
problem described above. Currently Nanusurface 
performs all calculations via finite-difference 
method engine but in near future it is planned to 
implement finite element method [25].  
For our experiments we used the following input 
data [26]: 

10 ,l m 1 0.1 ,H m  2 0.01 ,H m 1 0.25  , 

 30 ,days  1 2 0.0065    , 85 10R m  , 1  , 

0 , 1fk  , 
2

3
1 2 10 m

D
day

  , 
2

5
2 1 10 m

D
day

  , 

1
1 3( ) 5 ,кг

C t
м

 2
1 3( ) 0 ,kg

C t
m

 1
2 3( ) 5 ,kg

C t
m



2
2 3( ) 0 ,kg

C t
m

 0
1 3( ) 5 ,kg

C x
m

 0
2 3( ) 5 ,kg

C x
m



0
3( , ) 0 kg

Q x r
m

 , 0.05 

34,2 , 2137 , 108 ,T T

kJ kJ kJ
с с

kg m C m dayC C
    

     
0 0

2 0( ) 5 , ( ) 1T t C T x C  , 0
1( ) 20 ,T t C

3
31 10 ,kg

m
  

2
41 10T

m
D

day

  ,

 
0.23 (( ) 1.5)
4.5

h exp h+ x
h


    


,

 
3.5 ( )
1.5fK K exp h+ x
 

    
 

. 

Usually, in the case of laminar filtration the 
coefficient of convective diffusion may be presented 
in linear dependence from the filtration rate [27]: 

( ) ( )
1, ,k k

i iD D     11, 1,i n   31, ,k n  
where D  is the coefficient of molecular 
diffusion in a porous medium and λ is the 
dispersion parameter. We adopt the following 
dependence of the filtration rate 1( )fK c ,T  on 
the concentration of the salt solution and soil 
temperature. This information presented in [18].  
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5 Analysis of Computational Results 
We obtained the graphs of the piezometric head 
(Fig. 2), fields of moisture velocity υ(x, t) (Fig. 3), 
temperature T (x, t) (Fig. 4) and the distribution of 
c1(x, t), c2(x, t) and salt solutions concentration over 
the unsaturated region over the time (Fig. 4). 
 

 
Figure 2. Distribution of piezometric head h(x) at 

different time steps: 1) 30 days; 2) 1 year; 3) 2 
years; 50 months. 

 
Figure 3. Distribution of moisture velocity υ(x) for 

nonlinear dependence of the moisture factor 
( )f f 1K K x,c  at different time steps: 1)  30 days; 

2) 1 year; 3) 2 years. 
 

The flow of the pore water (Fig. 4) in both saturated 
and unsaturated soil depends on the piezometric 
head. That is to say, when the difference in 
piezometric head between two points is zero, the 
pore water is under the hydrostatic condition and 
does not flow. On the other hand, when the 
difference in piezometric head between two points 
is not zero, the pore water is under the 
hydrodynamic condition and the pore water flows in 
soil irrespective of saturated and unsaturated 
conditions. It means that the piezometric head is one 
of the most important physical quantities for the 
pore water in the soil. 
 

 
Figure 4. Temperature distribution T(x) at different 

time steps: 1)  30 days; 2) 2 mounths; 3) 1 year. 
 

 
Figure 5. Comparative distribution of concentrations 

1( , )c x t  and 2 ( , )c x t  depending on the depth of the 
soil layer x over the time t. 
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Figure 7. Comparative distribution of concentrations 
1( )c x  (graphs 4, 5, 6) and 2 ( )c x  (graphs 1, 2, 3) 

taking into account mass transfer in microparticles 
at different time steps: 1) 30 days; 2) 0.5 year; 3) 1 

year. 

 

Figure 7. Distribution of concentration q(x,r,t) in 
microparticles at depth 1m from the top at different 
time steps: 1)  30 days; 2) 0.5 year; 3) 1 year; 4) 3 

years. 

The influence of microparticles on overall mass 
transfer has become obvious. The presence of 
sorbent microparticles with specific characteristic in 
the ground may accelerates up to 10% the process of 
cleaning the soil drought from pollution. 

6 Conclusion 
The physical problem of soil purification according 
to agroindustry requirements and critical analysis of 
several scientific papers was formulated. The 
nonlinear mathematical model of the contaminant 
vertical migration in unsaturated catalytic porous 
media to the filter-trap in isothermal conditions was 
defined. Catalytic porous media were presented with 
colloid nano adsorbents (e.g. sapropel). The 
mathematical model took into account the micro and 
the meso/macro scale factors of the heat mass and 
moisture transfer processes. Numerical and 
analytical solutions of the complicated boundary 
value problem have been proposed. The necessary 
classes for the NanoSurface software package were 
developed and the numerical experiments with their 
analysis have been conducted. 
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